Pengaruh Monosodium Glutamat Terhadap Fertilitas Pria

Ika Inda Bani, Zulkarnain Zulkarnain, Gholib Gholib

Abstract

The current modern era causes lifestyle changes, especially in urban communities, in terms of daily consumption patterns that tend to be accustomed to consuming fast food that contains many additional compounds. A compound commonly known as a food flavoring additive is monosodium glutamate (MSG), a sodium salt that is naturally produced from L-glutamic acid. Apart from its role in enhancing the taste of food, several studies have shown that MSG has toxic effects on human and animal tissues including the reproductive system which may cause infertility. Glutamate in MSG has a direct reaction effect at the cellular level, one of which forms free radicals and causes oxidative stress. The increase in free radicals in the body can cause damage to the organs of the body including the testes. Damage caused by MSG can also occur centrally in the hypothalamus so that it interferes with the hormonal and endocrine reproductive systems. Damage to pituitary cells will inhibit the production of gonadotropin-releasing hormone (GnRH), resulting in a decrease in gonadotropin levels, either luteinizing hormone (LH) or follicle stimulating hormone (FSH) produced by the pituitary gland. This article aims to discuss in detail how MSG affects male fertility.

Keywords

Monosodium glutamate, infertility, male, oxidative stress, spermatozoa

References

Hernández Bautista RJ, Mahmoud AM, Königsberg M, López Díaz Guerrero NE. Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111: 503–16. Available from: https://doi.org/10.1016/j.biopha.2018.12.108

Kurtanty D, Faqih DM, Upa NP. Review Monosodium glutamat how to understand it properly?. Journal of Chemical Information and Modeling. 2019; 53: 1–87.

Mondal M, Sarkar K, Nath PP, Paul G. Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environ Toxicol. 2018;33(2):198–208.

Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012;9(12):1–12.

Bennett LR, Wiweko B, Bell L, Shafira N, Pangestu M, Adayana IBP, et al. Reproductive knowledge and patient education needs among Indonesian women infertility patients attending three fertility clinics. Patient Educ Couns [Internet]. 2015;98(3):364–9. Available from: http://dx.doi.org/10.1016/j.pec.2014.11.016.

Agarwal A, Qiu E, Sharma R. Laboratory assessment of oxidative stress in semen. Arab J Urol [Internet]. 2018;16(1):77–86. Available from: https://doi.org/10.1016/j.aju.2017.11.008.

Sukmaningsih A, Ayu I gusti, Ermayanti, Wiratmini ngurah intan, Sudat N. Gangguan Spermatogenesis setelah pemberian Monosodium glutamat pada mencit (Mus musculus L) The disturbance on spermatogenesis after administration of Monosodium glutamate on mice (Mus musculus L). J Biol. 2011; 15(2):49–52.

Sari RM, Rita RS, Anas E. Pengaruh pemberian isolat katekin gambir (Uncaria gambir Roxb) terhadap kadar hormon testosteron dan jumlah spermatozoa tikus Rattus Novergicus jantan hiperglikemia. J Kesehat Andalas. 2018;7(Supplement 3):6.

Kianifard D, Saiah GV, Rezaee F. Study of the protective effects of quince (Cydonia Oblonga) leaf extract on fertility alterations and gonadal dysfunction induced by monosodium glutamate in adult male wistar rats. Rom J Diabetes, Nutr Metab Dis. 2015;22(4):375–84.

Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ [Internet]. 2011;18(2):282–92. Available from: http://dx.doi.org/10.1038/cdd.2010.92.

Niederberger C. Male infertility. J Urol. 2010;184(5):2085–8.

Safitri U. Pengaruh Monosodium glutamat (MSG) terhadap penurunan fungsi keseimbangan tunuh tikus putih jantan (Rattus novergicus strain Wistar). Vol. 15. Universitas Muhammadiyah Malang; 2016.

Edward Z. Pengaruh pemberian Monosodium glutamat (MSG) pada tikus jantan (Rattus norvegicus) terhadap FSH dan LH. Maj Kedokt Andalas. 2015;34(2):160.

Ugur Calis I, Turgut Cosan D, Saydam F, Kerem Kolac U, Soyocak A, Kurt H, et al. The effects of monosodium glutamate and tannic acid on adult rats. Iran Red Crescent Med J. 2016;18(10).

Onakewhor J U E, Oforofuo I A O, Singh S P. Chronic administration of Monosodium glutamate induces Oligozoospermia and glycogen accumulation in Wister rat testes [Internet]. Africa J. Reprod Health. Benin, Nigeria; 1998; 2: p. 190–7. Available from: https://www.ajrh.info/index.php/ajrh/article/view/1048.

Foran E, Trotti D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxidants Redox Signal. 2009;11(7):1587–602.

Wang CX, Zhang Y, Li QF, Sun HL, Chong HL, Jiang JX, et al. The reproductive toxicity of monosodium glutamate by damaging gnrh neurons cannot be relieved spontaneously over time. Drug Des Devel Ther. 2021;15:3499–508.

Skerry TM, Genever PG. Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci. 2001;22(4):174–81.

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine (5th edn). 5th ed. Oxford University Press; 2015.

Fernstrom JD. Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann Nutr Metab. 2018;73(Suppl 5):43–52.

Hajihasani MM, Soheili V, Zirak MR, Sahebkar A, Shakeri A. Natural products as safeguards against monosodium glutamate-induced toxicity. Iran J Basic Med Sci. 2020;23(4):416–30.

Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J Urol [Internet]. 2019;17(2):87–97. Available from: https://doi.org/10.1080/2090598X.2019.1599624.

Dutta S, Sengupta P, Slama P, Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci. 2021;22(18):1–20.

Santi D, Crépieux P, Reiter E, Spaggiari G, Brigante G, Casarini L, et al. Follicle-stimulating hormone (FSH) action on spermatogenesis: A focus on physiological and therapeutic roles. J Clin Med. 2020;9(4).

Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, et al. FSH for the treatment of male infertility. Int J Mol Sci. 2020;21(7):1–20.

Noor SM, Dharmayanti I, Wahyuwardani S, Muharsini S, Cahyaningsih T, Widianingrum Y, et al. Penanganan rodensia dalam penelitian sesuai kaidah kesejahteraan hewan. Revisi. Noor SM, Wahyuwardani S, Bakrie B, Wasito, Praharani L, Sri Nurhayati I, editors. Jakarta: IAARD Press; 2021.

Baskys A, Blaabjerg M. Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies. J Neurol Sci. 2005;229-230:201-209. doi:10.1016/j.jns.2004.11.028

Toor JS, Sikka SC. Human Spermatozoa and Interactions with Oxidative Stress. Vol 2. Elsevier Inc.; 2018. doi:10.1016/B978-0-12-812501-4.00006-7.

Rashtian J, Chavkin DE, Merhi Z. Water and soil pollution as determinant of water and food quality/contamination and its impact on female fertility. Reprod Biol Endocrinol. 2019;17(1):1-14. doi:10.1186/s12958-018-0448-5.

Refbacks

  • There are currently no refbacks.