Peningkatan Kadar Troponin-I Paska Resusitasi Cairan pada Sus Scrofa Sebagai Model Hewan Coba Renjatan

Hotber E. R. Pasaribu, Antonius H Pudjiadi, Rismala Dewi

Abstract

Provision large amounts of fluids in a short period is known can cause hypervolemia. Therefore, an examination is needed to find out that the fluid resuscitation being administered does not cause hypervolemia. The purpose of this study is to assess the effect of hypervolemic resuscitation on cardiac contractility. The study was conducted on 10 male Sus Scrofa aged 6-8 weeks, as shocked animal models. There are 3 types of resuscitation treatments : normovolemic, hypervolemic-1, and hypervolemic-2. Cardiac contractility was assessed using DPmax and troponin-i levels. There was an increase in troponin-i levels after hypervolemic fluid resuscitation (p = 0.05). There is a decrease in cardiac contractility after hypervolemic resuscitation. Decreased cardiac contractility is associated with increased troponin-i (r = 0.720; p = 0.020). Based on the results, we conclude hypervolemic resuscitation causes changes in troponin-i levels, which reflect changes in cardiac contractility.

Keywords

Hypervolemic, Dpmax, Troponin-i

Full Text:

PDF

References

Boldt J, Ince C. The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review. Intens Care Med. 2010;36:1299-308.

Somasetia DH, Sjahrodji AM, Idjradinata PS, Setiabudi S, Roth H, Ichai C, dkk. Early resuscitation of dengue shock syndrome in chidlren with hyperosmolar sodium-lactate: A randomized single-blind clinical trial of efficacy and safety. Crit Care Med. 2014;18:1-11.

Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, dkk. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368-72.

Rhodes A, Evans LE, Alhazzani W. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: Intensive Care Med. 2017;43:304-77.

Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-olupot P, Akesh SO, dkk. Mortality after fluid bolus in African children with severe infection. N Eng J Med. 2011;364: 2483-95.

Dewi R, Supriyatno B Madjid AS. The effects of colloid or crystalloids on acute respiratory syndrome in swine (Sus Suscrofa) models with severe sepsis:analysis on extravascular lung water, IL-8, and VCAM-1. Med J Ind. 2016;25:33-8.

Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: Preconditioning, postconditioning and translational aspects of protective measure. Am J Phys Heart and Circ Phys Pub. 2011;301:1723-41.

Cannon Ro. Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat Clin Pract Cardiovasc Med. 2005;2:88-90.

Ebashi S, Ohtsuki I. Troponin : structure, function and dysfunction. Adv Exp Med Biol. 2000;592:21-39.

Fernandes CJ Jr, Akamine N, and Knobel E. Cardiac troponin: A new serum marker of myocardial injury in sepsis. Intensive Care Med. 1999;15:1165–8.

Freud Y, Chenevier-Gobeaux C, Bonnet P, Slaessens YE, dkk. High sensitivity versus conventional troponin in the emergency departement for the diagnosis of ecut myocardial infarction. Crit Care. 2011;15:1-9.

Apple FS, Wu AHB, Jaffe AS. Implementation of the ESC/ACC guidelines for redefenition of myocardial infarction using cardiac troponin assays with special attention to clinical trial issues. Am Hearth J. 2002;144:981-6.

Babuin L, Jaffe AS. Troponin: The biomarker of choice for the detection of cardiac injury. CMAJ. 2005;10:1191-202.

Tanindi A, Cemri M. Troponin elevation in condition other than acute coronary syndrome. Vasc Health Risk Manag. 2011;7:597-603.

Morimont P, Lambermont B, Desaive T, Janssen N, Chase G, D’Orio V. Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved. BMC Cardiovasc Disord. 2012 Mar 1;12:13.

Pudjiadi AH. Pengaruh resusitasi normo dan hipervolemik terhadap hemodinamik Sus Scrofa sebagai model hewan coba renjatan: Kajian pada atrial natriuretic peptide, glycocalyx endotel vascular, extravascular lung water index, mean arterial pressure, kadar hemoglobin dan pasokan oksigen (Disertasi). Program Pendidikan Doktor Ilmu Kedokteran. Jakarta: Universitas Indonesia, 2018.

Houseman RA, Mc Donald, Pennie K. The measurement of total body water ini living pigs by deuterium oxide dilution and its relation to body composition. Br J Nutr. 1973;30:149 – 56.

Trof RJ, Beishuizen A, Comet AD, De Wit RJ, Girbes ARJ, Groeneveld J. Volume-limited versus pressure limited hemodynamic management in septic and nonseptic shock. Crit Care Med. 2012;40:1177-85.

La Combe P, Lappin S. Physiology, cardiovascular, starling relationships. N Lib Med. 2017;6:1-4.

Castro C, Ortiz D, Palmer AF, Cabrales P. Hemodynamics and tissue oxygenation after hemodilution with ultrahigh molecuar weight polymerized albumin. Min Anest. 2014;80:537-46.

Kirov MY, Kuzkov VV, Bjertnaes LJ. Extravascular lung water in sepsis. Crit Care Med. 2006;34:449-60.

Keurs HEDJT, Iwazumi T dan Pollack GH. The sarcomer length-tension relation in skletal muscle. J Gen Physiol. 1978;72:565-92.

Neves JS, Leite Moreira AM, Neiva SM, Almeida CJ. Acute myocardial response to stretch:what we don’t know. Frontier in Physiology. 2016;6:1-11.

Bougle A, Harrois A, Duranteau J. Resuscitative strategies in traumatic hemorrhagic shock. Ann Intensive Care. 2013;3:1-9.

Tomec RJ, Sun D, Carville DGM, Walsh MM. A rapid and sensitive assay for the evaluation of cardiac troponin-i (cTnI) using the i=STAT bedside system. Memorial Hospital & Health System, South Bend, IND and Clinical Solution & Innovation, South Bend Indiana. 1989.

Takeishi Y, Chu G, Kirk Patrick, Li Z, Wakasaki H, Kranias EG, dkk. In vivo phosphorylation of cardiac troponin-i by protein kinase Cß2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J Clin Invest. 1998;102:72-8.

Refbacks

  • There are currently no refbacks.